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Abstract - Epilepsy is a disorder of recurrent seizure activity
caused by rhythmic firing of neurons. Epileptiform activity can
be generated by incubating brain slices in magnesium-free
artificial cerebrospinal fluid (ACSF). In the present study,
epileptiform discharges induced by the omission of magnesium
ions from ACSF has been studied in hippocampal slices
obtained from young rats using patch clamp tight-seal whole
cell recording technique. Effects of AP5 to block NMDA
receptor activation and acidic pH shift of ACSF on the
epileptiform current was studied. It was found that magnesium-
free ACSF induced epileptiform activity frequency was
attenuated with AP5 application more than 50 %. The pH shift
of the magnesium-free ACSF from 7.3 to 7.1 depressed the
epileptiform activity. Both effects were shown to be reversible.
According to the results of this study, epileptiform activity and
mild extracellular acidic shifts do not interact to aggravate
excitotoxicity conditions in CA1 pyramidal neurons.
Key words - Hippocampal slices, Patch clamp recording, Epilep-
tiform activity, CA1 pyramidal neuron, NMDA receptor

I. INTRODUCTION

Epilepsy is a disorder of recurrent seizure activity that is
caused by synchronous and rhythmic firing of neurons. It can
be caused by the deficiency of certain chemicals. Seizure
occurring in immature brain is generally symptomatic; that is
due to the electrolyte imbalance. These imbalances may
include calcium, magnesium, glucose, amino acid and
pyridoxine deficiencies. The hippocampal formation is
located in temporal lobe and shown to be involved in
epilepsy. The relation between the hippocampal sclerosis,
temporal lobe epilepsy and the development of childhood
seizure has been shown in affected individuals [1]. Profound
CA1 pyramidal cell loss was observed in patients suffering
from uncontrolled temporal lobe epilepsy. In the same
patients, by intracranial recordings, the loci for the
generation of the ictal spikes have been reported to be the
CA1 pyramidal cell region [2,3].

The amino acid glutamate is known to be an important
neurotransmitter in the CNS to evoke the neuronal
excitation and also a potent neurotoxin [4]. The
involvement of the pathological activation of glutamate
receptors in epileptic brain damage in rat hippocampus has
been shown [5]. Glutamate release from the presynaptic
neuron excites different receptor subgroups that have
distinct pharmacological and anatomical distributions [6,7].
These receptor subgroups are; N-methyl-D-aspartic acid
(NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazole prop-

ionic acid (AMPA), kainate and metabotropic receptors.
NMDA receptor-channel complex is a coincidence detector;
it is activated by binding of glutamate to the agonist site of
the receptor and with omission of magnesium ions from the
channel in a voltage dependent way [8,9,10]. NMDA
channel is permeable to sodium, potassium, and calcium
ions. Selective calcium ion permeability of NMDA channel
is believed to be important in physiological and
pathological events occurring in neuron [11,12]. In low
magnesium containing media NMDA channel loses its
voltage sensitivity and becomes permeable at any
membrane voltage [8]. In human epileptogenic neocortex
slices perfusion with magnesium-free artificial
cerebrospinal fluid (ACSF) caused the generation of
spontaneous epileptiform activity that was effectively

blocked by NMDA receptor antagonist (±)-2-Amino-5-
phosphonopentanoic acid (AP5) [13]. Magnesium ion is a
physiological necessity and involved in enzymatic reactions,
which modulates the functioning of potassium, calcium
channels and NMDA receptor-ionophore complex
[8,9,14,15]. In CA1 pyramidal neurons wash with
magnesium-free ACSF did not abolish the inhibitory
synaptic potentials, the enhancement of the activity was
rather due to increased excitation [16].

Hippocampal CA1 region is rich in NMDA receptors
and very sensitive to extracellular pH changes [17,18].
Extracellular pH is highly dynamic in mammalian brain and
influences functioning of biochemical processes, proteins
and receptors. In hippocampal slices obtained from young
animals, the susceptibility of the CA1 region to pH changes
was found to be higher than CA3 and dentate gyrus [19].

In the present study, enhanced excitation model for the
induction of the epileptiform activity has been used in the
absence of synchronized external stimulation. Under this
condition, epileptiform currents were recorded from CA1
region of hippocampal slices by using patch clamp tight-seal
whole cell recording technique. The effect of selective
NMDA antagonist AP5 and the influence of mild acidic shift
on the epileptiform activity in the vulnerable CA1 region
have been studied.

II. MATERIALS AND METHODS

Hippocampal slices of 300 µm thickness were obtained
from young Sprague-Dawley rats (14-21 day old) by using a
vibroslicer (Campden Instrument LTD). Hippocampal slices
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were incubated in ACSF, at room temperature for functional
recovery. Hippocampal slice preparation offers the
advantage of studying organized and intact synaptic
structures under in vitro conditions [20].

The ACSF contained (in mM:): 125 NaCl; 3.75 KCl; 26
NaHCO3; 1.2 NaH2PO4; 1.3 MgCl2; 2 CaCl2; 10 Glucose.
Magnesium free ACSF was not containing magnesium ions.
Both solutions were continuously bubbled with carbogen.
The control current recordings were made under ACSF
perfusion of slices, then perfusion solution was changed to
magnesium free ACSF. NMDA receptor antagonist AP5 (60
µM) was applied to the Mg2+-free ACSF. Patch clamp tight-
seal whole cell recordings were made from CA1 stratum
pyramidale region of the hippocampal slices. The patch
electrodes were positioned under the visual control to the
stratum pyramidale region. The tip resistance of the patch
electrodes were ranging between 3-5 MΩ. Positive pressure
was applied to the recording electrode before insertion into
the slice. With an approach to the CA1 pyramidal cell the
test current decreased. Following the release of the positive
pressure the subsequent suction facilitated the giga-seal
formation. Upon the breakthrough to the whole cell mode,
the cells having a resting membrane potential of -60 mV or
lower with no spontaneous discharge were accepted. The
recorded activity was spontaneous activity; thus there was no
synchronized external stimulation to any of the hippocampal
tracts.

Acidic condition was mimicked by acidic pH shift of 0.2
unit of the perfusion solution that hippocampal slices were
bathed while patch clamp recording from the CA1 pyramidal
cell was continued. The pH of the perfusion system was 7.3-
7.4. Reported pH values reflect the values for the gassed
reservoir of Mg2+-free ACSF. Recordings were made in
continuous voltage clamp mode.

Acquired data were processed using the MATLAB
software (version 5.0). Baseline of traces in Fig.1 and 3 were
fixed at zero pA to provide the consistency in y-axis.
Histograms were computed from 15 waveforms yielding a
total of 1 minute analysis period.

III. RESULTS

The current recordings were made from CA1 pyramidal
cells of young rats with stable membrane potentials of -60
mV or lower in ACSF. Upon the change of ACSF to Mg2+-
free ACSF, the epileptiform activity was initiated. The
epileptiform current activity was reverted to the control
activity upon the change of the Mg2+-free ACSF to ACSF.

Effect of AP5 (60 µM) on the epileptiform activity is
shown in Fig. 1. The control activity under the Mg2+-free
ACSF perfusion (Fig. 1A) was reversibly depressed with
AP5 application (Fig. 1B). The observed spike occurancy
depression upon AP5 application in different CA1 pyramidal
neurons were more than 50 % (Ave= 69.5; SEM= ±3.7)(n=
8). In some of the neurons AP5 application caused the
complete cessation of epileptiform activity (n=3).

Histograms were constructed from the AP5 application data
for one minute of continuous recording in each condition
and show the depression of epileptiform current occurrence
(Fig. 2).

Mild acidity was mimicked by extracellular pH shift of
Mg2+-free ACSF. Epileptiform discharges were recorded at
pH 7.3 (Fig. 3A). With the change of the perfusion solution
to Mg2+-free ACSF having pH 7.1, the frequency of activity
was depressed (Fig. 3B). The histograms of pH effect were
constructed from one minute of continuous recording in each
condition and show the decrease in the number of
occurrence and amplitude of currents (Fig.4). The effect of
increased proton concentration on the epileptiform current
was reversible.

IV. DISCUSSION

In the present study, epileptiform discharges induced by
the omission of magnesium ion from ACSF have been
studied in hippocampal slices. The suppressant effect of
NMDA receptor antagonist AP5 on the epileptiform current
frequency has been shown. Furthermore, the depressant
effect of acidic pH shift on the epilepsy activity has been
demonstrated.

Magnesium ion deficiency induces depolarization and
hyperexcitability in hippocampal neurons that may carry the
neuron to the threshold of excitotoxicity [16]. The
depressant action of anticonvulsants on magnesium-free
ACSF induced epileptiform activity has been shown before
[21]. Magnesium ion modifies the functioning of potassium,
calcium channels and NMDA receptors [8,9,14,15].
Peripheral administration of the magnesium sulfate increased
the magnesium concentration in the cerebrospinal fluid and
the uptake has been reported to be the highest in the
hippocampus [22]. In our study, we showed the effect of the
magnesium ion deficiency in hippocampal slices of young
rats under the most basal activity; i.e., the spontaneous
activity condition.

As the experimental results of this study indicated,
epileptiform activity was downregulated with extracellular
acidic shift of 0.2 pH unit; a change that has physiological
relevance. pH changes are well documented in central
nervous system during synaptic transmission, glutamate
receptor activation, ischemia and seizures. It has been
reported that the cerebral blood flow reduction is followed
by a subsequent acidic change of 0.3 pH unit in extracellular
pH [23]. Under pathological conditions like ischaemia and
pH decrease, conditions for the excessive activation of the
neurons are available. Metabolic energy production is
impaired and glutamate is abundantly present in the
extracellular space. The excessive stimulation of the
glutamate receptors may cause the disturbance of calcium
and sodium ions homeostasis. The importance of the calcium
ion in the initiation of the neuronal excitotoxicity has been
shown [24].
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Fig. 1. Effect of the competitive NMDA antagonist AP5 on the
epileptiform activity recorded from CA1 pyramidal neuron. A)
Epileptiform current frequency was 2.5 Hz with magnesium
free ACSF perfusion. B) Upon AP5 (60 µM) application to the
magnesium free ACSF the epileptiform activity decreased to
1.2 Hz. The epileptiform current occurrence was depressed by
50 % in this neuron.

Fig. 3. Effect of extracellular acidic shift (0.2 pH unit) on
epileptiform current recorded from CA1 pyramidal neuron. A)
The control epileptiform current recorded at pH 7.3; the
discharge frequency was 1.2 Hz. B) Epileptiform current
frequency was depressed to 0.75 Hz by changing perfusion
solution to magnesium free ACSF having pH 7.1.

Fig.  2. Histograms show the effect of the AP5 application on the
epileptiform activity. Data obtained from one minute recording
were used to draw histograms. A) Epileptiform current
distribution during  perfusion with magnesium free ACSF. B)
Application of AP5 decreased the occurence of the spontaneous
epileptiform currents.

Fig. 4. Histograms show the effect of 0.2 unit pH change on
epileptiform activity. Data obtained from 1 minute of
continuous recording were used in each condition. A)
Epileptiform current distribution of CA1 pyramidal cell
during perfusion with magnesium free ACSF (pH 7.3). B)
Changing the perfusion solution (pH 7.1), decreased the
number of occurrence and amplitude of spontaneous
epileptiform currents.



Exposure to high concentrations of glutamate caused
mitochondrial depolarization, superoxide radical generation
and neurotoxicity with the activation of NMDA receptors in
cultured forebrain neurons [25,26]. Superoxide radical
generation was increased in hippocampal slices incubated in
magnesium-free ACSF (our unpublished results), indicating
that conditions leading to excitotoxicity are initiated with
magnesium free model of epilepsy.

In this study, magnesium-free ACSF induced
epileptiform activity of CA1 hippocampal pyramidal cells
were depressed with mild acidic shift. Likewise, as an
intrinsic protection mechanism the selective depressant
effect of increased proton concentration on NMDA current
has been reported in CA1 pyramidal cells of hippocampal
slices [27], in dissociated cell culture of hippocampal
neurons [28] and in cerebellar neurons [29]. It is possible
that the presence of excessive neuronal activation that might
be leading to the neuronal damage is not exacerbated but
controlled with mild extracellular acidic shifts. Extracellular
acidity seems to initiate a hindrance mechanism to prevent
the excessive neuronal damage caused by epileptiform
activity conditions in hippocampal CA1 pyramidal neurons
of young rats.
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